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Abstract

Vector Autoregression (VAR) and local projection (LP) are the two main meth-
ods of estimating and conducting inferences of the impulse response functions (IRFs)
in macroeconomic studies, allowing researchers to choose between them based on the
subjects of interest. This paper extends existing works on the comparison between AR
inferences and LP inferences, by considering data generating processes with repeated
roots. Consequently, the autoregressive estimation of impulse responses will converge
to a special type of real-valued random variable, and the bootstrap Efron confidence
interval of lag-augmented AR will always be conservative, even if the roots are away
from the unit circle. This problem is more severe when the time series is highly persis-
tent and at both intermediate and long horizons. The results are supported by Monte
Carlo simulations with different values of roots in AR(2), AR(3) and VAR(1) models.

∗Corresponding concerns regarding this paper should be addressed to Qifan Han, the Department of
Economics, Boston University, email: qfhan94@bu.edu.
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1 Introduction

Estimating and conducting inference about impulse response functions is a central concern in

quantitative economic studies that use time series data. Many methods have been developed

to address key challenges and enhance the accuracy and robustness of these estimations

and inferences. Among these methods, two stand out and are widely used in empirical

research: the conventional Vector Autoregression (VAR) estimation and the local projection

method introduced by Jordà (2005). However, there has been ongoing debate about which

method is more suitable in different contexts. Recent literature has provided more insights

into the comparative advantages of these two methods. Plagborg-Møller & Wolf (2021)

demonstrated that VAR and local projection estimate the same impulse responses in the

population, suggesting that future studies should focus more on their performance in finite

samples. Montiel Olea & Plagborg-Møller (2021) addressed the issue of inference under

different assumptions, showing that using additional lags in local projection yields robust

inference results both at long horizons and with roots close to unity. Li et al. (2021) compared

the two methods using a weighted loss function and found that local projection is generally

less biased than VAR, while VAR typically produces lower variance at intermediate and

long horizons, similar to the comparison between direct forecasting and iterated forecasting

procedures (Schorfheide 2005, Marcellino et al. 2006). These studies provide researchers

with guidelines on how to choose between the methods in empirical work, based on their

data-generating processes (DGPs) or objective functions.

This paper extends the work of Montiel Olea & Plagborg-Møller (2021) and Inoue &

Kilian (2020) by examining a specific case of data-generating processes (DGPs): AR and

VAR models with repeated eigenvalues in the companion matrix1. In the original works, the

lag-augmented AR method achieves correct nominal coverage at all horizons when the DGP

is an AR(1)2, although this comes with the drawback of relatively wide confidence intervals.

This paper demonstrates that with repeated eigenvalues3, the limiting distribution of the

1This result also applies when the DGP has two approximately equal roots. However, how inferences are
related to the difference between the roots is beyond the scope of this paper.

2See Table 1 and Table 2 of Montiel Olea & Plagborg-Møller (2021).
3“Eigenvalues” and “roots” are used interchangeably throughout this paper. Since the roots refer to the

companion matrix of the DGP, a stationary time series requires all of them to lie within the unit circle.
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autoregressive estimation of impulse responses becomes atypical, and the bootstrap lag-

augmented AR method’s confidence intervals are always too conservative at intermediate

and long horizons. In this paper, I provide theoretical proofs of this conservativeness for

AR(2) and AR(3) models, and use Monte Carlo simulations with various parameter values

across different horizons to support the results numerically. My simulations also show that

the confidence intervals generated by lag-augmented (V)AR methods are very unstable in

their sizes. With the existence of multiple roots, the size of the AR bootstrap CI can easily

explode, even without unit roots or roots close to one.

The main contribution of this paper to the existing literature is twofold. From a theoret-

ical perspective, it demonstrates that the bootstrap lag-augmented AR confidence interval

consistently over-covers the true impulse response function (IRF) compared to the required

nominal coverage probability at long horizons in finite samples, unlike the results for AR(1)

presented in Montiel Olea & Plagborg-Møller (2021) and Inoue & Kilian (2020). From an

empirical perspective, this paper highlights three key findings from Monte Carlo simulations:

First, the lengths of the AR bootstrap confidence intervals (CIs) are highly dependent on

the underlying DGPs and are very unstable compared to other methods. Therefore, re-

searchers should be cautious when using it for time series inference and should ideally have

prior knowledge of their data structure. Second, the lag-augmented local projection method

consistently achieves the correct nominal level without the presence of a unit root, mak-

ing it a robust estimation method for different DGPs, including cases with repeated roots.

Third, Hall’s percentile confidence interval for the lag-augmented AR method is also too

conservative when there are repeated roots. This finding contrasts sharply with Inoue &

Kilian (2020), which suggests that Hall’s percentile CI for the lag-augmented AR method

undercovers at all horizons except the shortest one4.

This paper is structured as follows: Section 2 summarizes the two main methods for IRF

estimation, including the uniform validity of the related inferences. Section 3 introduces the

preliminaries of the theoretical results and states the main results with existence of repeated

roots. Section 4 discusses the implementation of Monte Carlo simulations of AR(2) models.

4See Table 2 of Inoue & Kilian (2020).
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Section 5 concludes. Proofs and Monte Carlo simulation results for AR(3) and VAR(1)

models are included in the Appendix.

2 IRF Estimation: AR and LP

This section briefly summarizes the existing literature on IRF estimations in macroeco-

nomics, and how the results of pointwise convergence evolves to the requirement of the

uniform validity of the inferences. Throughout this paper, I focus on the simple AR(p)

model and assume that the lag length p is known by the econometricians.

It is well-known that conventional OLS estimation and inference of the time series model

face severe size distortions when the time series is highly persistent, i.e. there is a unit

root or root close to the unit circle. The seminal work of Mikusheva (2007) summarized

a few proposed method to solve the inference problem with such roots, while raising the

question of whether these methods provide uniformly valid confidence intervals. Specifically,

pointwise convergence only satisfies that there exists a large enough sample size to achieve

the required nominal level for each value in the parameter space, however the required sample

size can be extremely large for some values in the parameter space and lead to poor coverage

performances in the finite sample. On the contrary, uniform convergence has a stronger

requirement that:

lim inf
T→∞

inf
ρ∈Θ

Pρ{ρ ∈ Ĉ} ≥ 1− α

Hence, the coverage probability is achieved asymptotically regardless of the value in the

parameter space for some large enough sample size. Mikusheva (2007) further showed that

pointwise asymptotics is not sufficient for uniform asymptotic validity, by proving that the

subsampling interval proposed by Romano & Wolf (2001) satisfies the former but not the

latter.

Recent literature on IRF estimations focused on the correct coverage probability and

uniform validity of the inferences at the same time. The leading methods, which are discussed

as follows, are lag-augmented autoregression discussed in Inoue & Kilian (2020) and lag-

augmented local projection proposed by Montiel Olea & Plagborg-Møller (2021).
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2.1 Lag-Augmented Autoregression

I follow the notations in Inoue & Kilian (2020) to introduce the framework of lag-augmented

AR inference. Consider an AR model of order p:

yt = ρ1yt−1 + · · ·+ ρpyt−p + ut

for t = 1, . . . , T and ut is a time series of white noise. The textbook AR method allows us

to estimate the AR slope coefficients with regression, and then use the plug-in estimations

to recover the impulse response functions based on iterated formulae.

Instead of fitting this AR(p) model, the lag-augmented AR method (Toda & Yamamoto

1995)(Dolado & Lütkepohl 1996) fits one more lag of outcome variable yt−p−1:

yt = ρ1yt−1 + · · ·+ ρpyt−p + ρp+1yt−p−1 + ut

but only uses the first p estimated coefficients ρ̂1, . . . , ρ̂p to recover the impulse response

functions for different horizons of interest h and conduct impulse response inferences. The use

of additional lag helps to rule out the singularity of the asymptotic variance of a continuously

differentiable function f(θ) of parameter θ from the model (Kilian & Lütkepohl 2017) and

achieve uniformity even with non-stationary time series.

They require the following assumptions5 to derive the uniform validity of the inferences:

1. The roots of the polynomial |ρ(z) = 0| have at most one outside the unit circle, whereas

all others must be inside the unit circle in modulus.

2. ut has bounded fourth moment.

Based on the assumptions, Inoue & Kilian (2020) showed that the bootstrap approxima-

tions have uniform validity, by proving the following results:

lim
T→∞

sup
θ∈Θ

sup
x∈R

∣∣P ∗((Df(θ̂∗T )Σ̂∗TDf(θ̂∗T )′)−1/2(f(θ̂∗T )− f(θ̂T )) ≤ x)− Φ(x)
∣∣ = 0

5See Assumption A (Inoue & Kilian 2020)
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lim
T→∞

sup
θ∈Θ

sup
x∈R

∣∣P ∗((f(θ̂∗T )− f(θ̂T ))(Df(θ̂∗T )Σ̂∗TDf(θ̂∗T )′)−1(f(θ̂∗T )− f(θ̂T )) ≤ x)− Fχ2
dΨ

(x)
∣∣ = 0

almost surely conditional on the data Y T = (y1, . . . , yT ). In the above result, superscript

asterisk denotes the bootstrap version of the estimators, Φ(·) denotes the cumulative density

function of a standard normal distribution and Fχ2
dΦ

(·) represents the cumulative density

function of the chi-squared distribution with degrees of freedom dΨ.

2.2 Lag-Augmented Local Projection

On the other hand, an increasing number of studies start to adopt the method of local projec-

tion (LP) introduced by Jordà (2005), as it is easy to understand and implement in empirical

works. Whereas the AR method is using recursive forecasting, local projection is an analogy

to direct forecast procedure (Ramey 2016). However, whether local projection inference has

some advantages compared to VAR inferences has long been under debate. Although Jordà

(2005) suggested that local projection both simplifies the inference and is more robust to

model misspecifications, these conclusions were rejected by Kilian & Lütkepohl (2017). Re-

cently, the work of Breitung et al. (2019), Plagborg-Møller & Wolf (2021) and Montiel Olea

& Plagborg-Møller (2021) allowed people to have a deeper understanding of the role of local

projection inferences in macroeconomics.

Using the same DGP as that of the AR method, the researcher is interested in the IRF

at h periods ahead, denoted by β(ρ, h), where ρ = (ρ1, . . . , ρp). The original DGP can be

written in the following way:

yt+h = β(ρ, h)yt +

p−1∑
l=1

δl(ρ, h)yt−l + ξt(ρ, h)

where

ξt(ρ, h) =
h∑
l=1

β(ρ, h− l)ut+l

The conventional local projection method basically regresses yt+h on p lags of yt, and apply

the heteroskedasticity and autocorrelation consistent/robust (HAC/HAR) standard errors

for inference ((Jordà 2005), (Ramey 2016)). On the other hand, the lag-augmented local pro-
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jection method regress yt+h on yt, while controlling for additional p periods (yt−1, . . . , yt−p).

Hence, it is similar to the process of lag-augmentation in AR method as it regresses on p+ 1

lags of outcome variables. The only additional assumption is that we require the residual term

{ut} to be strictly stationary and E[ut|{us}s 6=t] = 0 almost surely. Let xt ≡ (yt, . . . , yt−p)
′,

we get: β̂(h)

γ̂(h)

 ≡ (T−h∑
t=1

xtx
′
t

)−1 T−h∑
t=1

xtyt+h

Another interesting feature of lag-augmented LP is that it suffices to use the heteroskedasticity-

robust Eicker-Huber-White standard error defined as

ŝ(h) ≡ (
∑T−h

t=1 ξ̂t(h)2ût(h)2)1/2∑T−h
t=1 ût(h)2

where

ξ̂t(h) ≡ yt+h − β̂(h)yt − γ̂(h)′x̃t, x̃t ≡ (yt−1, . . . , yt−p)
′

ût(h) ≡ yt − ρ̂(h)′x̃t, ρ̂(h) ≡

(
T−h∑
t=1

x̃tx̃
′
t

)−1(T−h∑
t=1

x̃tyt

)

The confidence interval with nominal size 100(1− α)% is given by:

Ĉ(h, α) ≡ [β̂(h)− z1−α/2ŝ(h) , β̂(h) + z1−α/2ŝ(h)]

Montiel Olea & Plagborg-Møller (2021) also derived the uniform validity of lag-augmented

LP inferences by proving that:

inf
λ∈[−1,1]

inf
1≤h≤h̄T

Pρ(β(ρ, h) ∈ Ĉ(h, α))→ 1− α as T →∞

The uniformity of the inference requires that either the roots are not at the unit circle, or

the horizon of interest hT satisfies hT/T → 0.
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3 Main Results: AR(2) Model

This section first lists the preliminaries for the main result in the AR(2) model with repeated

eigenvalues, then states the main results that: 1. The autoregressive estimation of impulse

responses converges to a special distribution. 2. Lag-augmented AR bootstrap confidence

interval is always conservative. Consider the following AR(2) model:

yt = ρ1yt−1 + ρ2yt−2 + ut

with companion matrix

A ≡

ρ1 ρ2

1 0


The eigenvalues of the companion matrix are given as

λ1 =
ρ1

2
+

√
ρ2

1

4
+ ρ2, λ2 =

ρ1

2
−
√
ρ2

1

4
+ ρ2

Hence,

λ1 = λ2 ⇔
ρ2

1

4
+ ρ2 = 0

If the eigenvalues are different, A has the following eigenvalue decomposition:

A =
1

λ1 − λ2

λ1 λ2

1 1

λ1 0

0 λ2

 1 −λ2

−1 λ1


If λ1 = λ2 = λ, the companion matrix has the following Jordan decomposition

A = S

λ 1

0 λ

S−1

where

S =

λ 1

1 0


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The true impulse response function at horizon h is give by

IRF(h) = (1, 0)Ah(1, 0)′ =


λh+1

1 −λh+1
2

λ1−λ2
if λ1 6= λ2

λh(h+ 1) if λ1 = λ2 = λ

Throughout the case of AR(2) model, I keep the following assumptions:

Assumption 1. (Repeated Roots and Asymptotic Normality)

1. λ1 = λ2 = λ = ρ1

2

2. The plug-in IRF is based on AR estimators (ρ̂1, ρ̂2) that are asymptotically bivariate

normal, i.e.

T 1/2

ρ̂1 − ρ1

ρ̂2 − ρ2

 d−→

Z1

Z2

 ∼ N2(0,W )

The following proposition states the result that when there are repeated roots, the au-

toregressive estimation of impulse response function converges in distribution to a special

real-valued random variable that is different from that in the usual cases.

Proposition 1.

Let the horizon of interest hT = hT 1/4, then

IRF
∧

(hT )

IRF (hT )

d−→ λ

h
√
Z

sinh(
h

λ

√
Z)

where Z ≡ (λ, 1)(Z1, Z2)′ and the limiting distribution is a real-valued random variable.

Proof of Proposition 1. See Appendix.

I then consider the inference on the impulse response function at given horizons using

bootstrap IRF estimators. Let ρ∗ = (ρ∗1, ρ
∗
2)′ be the consistent bootstrap version of the

estimators for ρ̂ = (ρ̂1, ρ̂2)′. Define

β(θ∗T , φ
∗
T ;Y T ) ≡ sup

f∈BL(1,Rp)

∣∣E[f(θ∗T )|Y T ]− E[f(φ∗T )|Y T ]
∣∣
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as the bounded Lipschitz distance between the distributions induced by θ∗T and φ∗T conditional

on the data Y T = (y1, . . . , yT ). The random vectors θ∗T and φ∗T are said to converge in bounded

Lipschitz distance in probability (conditional on Y T ) if

β(θ∗T , φ
∗
T ;Y T )

p−→ 0 as T −→∞

I derive the convergence property of bootstrap impulse response functions, and propose

an approximation of its 1−α quantile in the following proposition. Using the approximation,

the proposition shows that the lag-augmented AR(2) bootstrap quantile over-covers the true

IRF at horizon hT :

Proposition 2.

(i) Let (Z∗1 , Z
∗
2)′ ∼ N (0,W ) be a bivariate normal vector independent of the data. Suppose

that

β(T 1/2(ρ∗ − ρ̂), (Z∗1 , Z
∗
2))

p−→ 0

then

β

(
IRF ∗(hT )

(ρ̂1/2)hThT
,
sinh(f ∗(Z∗ + Z̃))

f ∗(Z∗ + Z̃)

)
p−→ 0

where

Z∗ = (ρ̂1/2, 1)(Z∗1 , Z
∗
2)′

Z̃ = T 1/2

(
ρ̂2

1

2
+ 4ρ̂2

)
and

f ∗(x) =
h
√
x

ρ̂1/2

Moreover, we can use the quantile of the following term to approximate the quantile of the

1− α bootstrap quantile of the IRFs:

(ρ̂1/2)hThT
sinh(f ∗(Z∗ + Z̃))

f ∗(Z∗ + Z̃)
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and we can approximate it by

(ρ̂1/2)hThT ĉ1−α = (ρ̂1/2)hThT · g
(√

z1−α +
√
T (ρ̂1/2 + 4ρ̂2)

h

ρ̂1/2

)

where g(x) ≡ sinh (x)
x

.

(ii) The 1− α two-sided Efron bootstrap CI can be approximated by

Ĉ ≡
[
ĉα/2(ρ̂1/2)hThT , ĉ1−α/2(ρ̂1/2)hThT

]
whereas hT = hT 1/4 and

ĉα = g

(√
zα +

√
T (ρ̂1/2 + 4ρ̂2)

h

ρ̂1/2

)

whereas g(x) ≡ sinh(x)
x

.

The coverage probability of the Efron bootstrap CI is

P
(
IRF (h) ∈ Ĉ

)
> 1− α

Proof of Proposition 2. See Appendix.

Remark 1.

We can extend the proof of AR(2) to AR(3). In the Appendix, we only consider the case when

the AR(3) model has two repeated roots. Note that in this case, the plug-in estimators for the

repeated roots will be conjugate pairs and have exactly the opposite asymptotic distributions

with convergence rate of T 1/4. Only the distinct root will have an asymptotic distribution

close to normal with a common convergence rate of T 1/2. We also need to decentralize the

IRF estimator in AR(3) model to get the same limiting distribution as in AR(2) cases. For

the details of differences in proofs, please see Appendix.

Proposition 1 and 2 state the main results of this paper based on AR(2) model with

repeated eigenvalues. The Efron bootstrap CI should cover the true IRF more frequently
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than the required nominal level. This is different from results in previous implementations

that the bootstrap CI always achieves the correct coverage probability, across all DGPs.

However, since both local projection and lag-augmented local projection are based on directly

regressing the outcome variable at horizon h periods ahead onto the current observation

and potential controls, they do not involve using plug-in estimators and hence should not

show such over-coverage problems in inferences. Moreover, lag-augmented local projection

is suggested to have the correct size across all data generating processes of AR and VAR,

unless the researcher is interested in long horizon impulse responses with unit root.

4 Monte Carlo Simulation Results

Following the propositions in the last section, this section shows the Monte Carlo simulation

results for AR(2) model. The sample size is T = 240, with values of the repeated root

λ = {0, 0.5, 0.95, 1} and horizons h = {1, 6, 12, 36, 60}. Each Monte Carlo simulation has

5000 repetitions and 2000 draws for each bootstrap implementation. The targeted nominal

confidence level is 90% across all cases.

I consider four candidates in the simulation: (1) conventional non-augmented AR esti-

mator with a delta method CI, (2) lag-augmented AR estimator with bias-adjusted Efron

bootstrap CI (Efron 1992), (3) non-augmented LP estimator with HAC standard errors,

Hall’s percentile-t CI (Hall 1992), and (4) lag-augmented LP estimator with AR bootstrap,

Hall’s percentile-t CI suggested in Montiel Olea & Plagborg-Møller (2021), Section 5. Table

1 reports the coverage probabilities and median lengths of the confidence intervals in each

setup.

It is not surprising that we see some of the simulation results close to the heuristic AR(1)

implementation in Montiel Olea & Plagborg-Møller (2021):

1. The conventional non-augmented AR asymptotics does not achieve the correct cover-

age probabilities in many cases. When the root is zero, the asymptotic normality fails

because the Jacobian matrix with respect to the impulse response function is singular

(Benkwitz et al. 2000). When the asymptotic normality holds as λ = 0.5, the con-
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Coverage Median Length
h AR ARLA LPb LPLAb AR ARLA LPb LPLAb

λ = 0
1 0.900 0.899 0.918 0.907 0.212 0.212 0.234 0.219
6 1.000 0.894 0.906 0.893 0.001 0.004 0.233 0.219

12 1.000 0.892 0.908 0.904 0.000 0.000 0.231 0.222
36 1.000 0.894 0.902 0.904 0.000 0.000 0.242 0.235
60 1.000 0.893 0.898 0.899 0.000 0.000 0.260 0.251

λ = 0.5
1 0.897 0.899 0.923 0.910 0.205 0.212 0.229 0.219
6 0.877 0.887 0.899 0.893 0.278 0.477 0.417 0.382

12 0.847 0.947 0.904 0.910 0.039 0.125 0.401 0.378
36 0.948 0.934 0.905 0.905 0.000 0.001 0.427 0.402
60 0.945 0.928 0.899 0.910 0.000 0.000 0.465 0.435

λ = 0.95
1 0.878 0.905 0.903 0.912 0.095 0.214 0.102 0.220
6 0.873 0.885 0.906 0.908 1.405 3.578 1.707 1.846

12 0.865 0.892 0.898 0.895 3.558 29.001 4.911 4.280
36 0.853 0.944 0.827 0.777 9.629 > 1000 14.846 11.727
60 0.809 0.938 0.781 0.812 11.817 > 1000 15.248 10.383

λ = 1
1 0.545 0.828 0.824 0.895 0.052 0.214 0.055 0.222
6 0.515 0.666 0.851 0.878 0.999 3.535 1.178 2.312

12 0.486 0.839 0.862 0.866 3.321 34.894 4.363 6.608
36 0.399 0.964 0.781 0.812 18.226 > 1000 30.835 37.325
60 0.336 0.961 0.710 0.746 36.258 > 1000 69.466 78.831

Table 1: MONTE CARLO RESULTS: AR(2), T = 240

ventional AR is conservative as shown in the last section. When the root is closer to

one and asymptotic normality assumption fails, we see the well-known size distortions.

However, non-augmented AR method is still favorable when the researchers are dealing

with short horizon estimations with roots that are far away from unity, because it is

more efficient than the other methods (Montiel Olea & Plagborg-Møller 2021) in these

cases.

2. Following the proof in the last section, the Efron bootstrap CI with lag-augmented AR

method is always conservative at both intermediate and long horizons across all DGPs

except when the time series is of no persistence, but it behaves relatively well when

the researchers are interested in IRFs at short horizons. The problem of over-coverage
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will be alleviated if the length of the time series increases and h/T → 0. However,

we may still recommend to use lag-augmented AR method at intermediate and long

horizons in practice, because the variance is substantially smaller than those of the LP

methods (Plagborg-Møller & Wolf 2021). The second concern with the lag-augmented

AR method is that the length of the confidence interval is extremely unstable and

highly depends on the underlying DGP: in the case of ρ ≤ 0.5, the median lengths of

the CI shrink to zero as the true IRF shrinks to zero rather fast. In local-to-unity root

or unit root cases, the median lengths of AR bootstrap CI explodes (Montiel Olea &

Plagborg-Møller 2021), compared to all other three candidates.

3. The non-augmented local projection method estimates the impulse response function

by regressing yt+h directly on yt and yt−1, without controlling for additional lag and use

HAR/HAC standard error corrections. The sizes of the Hall’s percentile-t confidence

interval are close to the nominal level, when the roots are away from the unit circle.

It also has less size distortion compared to conventional AR methods. Compared to

lag-augmented local projection, it sometimes has a slightly higher efficiency, because

it has regressors with larger variances compared to lag-augmented local projection.

4. Finally, lag-augmented local projection achieves the correct coverage probability at

most cases without unit root and long horizon inference, and the median lengths of

the confidence intervals are not exploding in extreme cases. It is relatively robust to

different setups. However, due to the under-coverage problem with unit root or local-

to-unity roots in highly persistent data, researchers may still prefer lag-augmented

AR methods to lag-augmented local projection, if they favor more conservative results

instead of higher probability of type I error. Note that the requirement for using EHW

standard error for the inference is slightly stronger than the usual assumption that the

innovations to be a martingale difference sequence.

Remark 2.

1. Shown in Table 2, the Hall’s percentile confidence interval of lag-augmented AR method

also suffers from an over-coverage problem, and they are more conservative compared
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to their Efron bootstrap counterparts. Such result is different from the conclusions in

Inoue & Kilian (2020), that the Hall percentile CI is not recommended because of its

poor coverage probability at all horizons but the shortest one. The proof for this case

is similar to the proof for Efron bootstrap confidence interval, as Hall’s percentile CI

is constructed based on ĉα/2 and ĉ1−α/2 as well.

2. The coverage probabilities of LPLA for λ = 0.95 and h = 36, 60 are not very ideal,

because we have a combination of local-to-unity roots and long horizons compared

to the sample size. When the sample size increases, LPLA will achieve the correct

nominal level with roots of 0.95, and the conservativeness of ARLA bootstrap CI will

also be alleviated6.

3. The Monte Carlo simulation results for AR(3) and VAR(1) models are similar to those

for AR(2) model. In AR(3) model, I consider both cases of a largest distinct root and

a smallest distinct root. The simulation results show that the over-coverage problem is

more significant when the largest root is distinct and the two smaller roots are identical.

The simulation results are included in Appendix B.

4. In the VAR(1) simulation, I use the same DGP as in Kilian & Kim (2011):

yt =

B11 0

0.5 0.5

 yt−1 + et, et ∼ N

0

0

 ,

 1 0.3

0.3 1


and set B11 as 0.5 to create repeated eigenvalues for the companion matrix in VAR(1)

case. Since the value of the root is not local-to-unity, the other three methods all

gets the same correct nominal size of confidence intervals, with reasonably small me-

dian lengths. The result is somehow opposite to the impression from Montiel Olea &

Plagborg-Møller (2021), that the lag-augmented AR bootstrap method is uniformly

valid across all DGPs, no matter for short, intermediate or long horizon inferences.

5. Similar to the implementation results of AR(1) in existing literature, the median

lengths of the Efron bootstrap CI vary significantly with respect to the underlying

6In the simulation with T = 1200 and λ = 0.95, LPLA has the correct coverage at all horizons, and
ARLA is conservative only at h = 60.
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DGPs. Note that the length of the Efron bootstrap CI is given by

(ĉ1−α/2 − ĉα/2)(ρ̂1/2)hThT

and ρ̂1 = λ̂1 + λ̂2 in AR(2) model. Hence, when the repeated root is closer to one,

and when the horizon of interest hT increases, the size of the 1−α confidence interval

increases as well. This problem is more significant when the underlying DGP is of

higher order, because the second part of the CI corresponds to the plug-in estimation

of IRF, and it is easy for the true IRF to be large with higher order, as long as the

largest eigenvalue is large. This result is also proved in Montiel Olea & Plagborg-Møller

(2021), Appendix B.2.2, as they argued that the bootstrap CI converges in distribution

to a non-degenerate random variable.

Coverage Median Length
ρ 0 0.5 0.95 1 0 0.5 0.95 1
h = 1 0.898 0.892 0.897 0.883 0.212 0.212 0.214 0.214
h = 6 0.551 0.953 0.992 0.998 0.004 0.477 3.578 3.535
h = 12 0.596 0.818 0.995 0.996 0.000 0.125 29.001 34.894
h = 36 0.569 0.906 0.991 0.910 0.000 0.000 4.015e+03 5.379e+03
h = 60 0.561 0.910 0.998 0.984 0.000 0.000 6.596e+05 1.028e+06

Table 2: MONTE CARLO RESULTS: AR(2) HALL’S PERCENTILE CI, T = 240

5 Conclusion

The recent series of papers comparing existing estimation methods for impulse responses have

given researchers great insights in the usage of them in finite sample, especially when the

researchers are dealing with highly persistent time series data or having interest in inferences

at long horizons. This paper contributes to existing literature by considering a special setup

in data generating processes: the existence of repeated eigenvalues of the companion matrix.

I show that the bootstrap AR confidence interval is always conservative at both intermediate

and long horizons compared to the sample size, because the repeated roots lead to a strange

limiting distribution of the estimated impulse responses. Such result is different from those
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in existing works, changing the impression that bootstrap AR inference always achieves

the required nominal level. Moreover, the simulation results show that the lengths of the

bootstrap confidence interval highly depend on the underlying DGP, and it is easier for the

confidence interval to explode when the model is VAR and of higher order.

In general, the result suggests that: with non-persistent time series data and short horizon

inference, the textbook AR inference outperforms other competitors with higher efficiency.

Lag-augmented AR is more favorable when there is a high chance of unit root, however

the researchers are interested in inferences at short horizons or care less about possible

conservativeness and exploded confidence intervals. Lag-augmented local projection will be

a safe choice, as long as the horizon of interest is not very long while there is a unit root or

root that is local-to-unity. However, this method requires that innovations satisfy the mean

independence assumption, which is slightly stronger.

Several extensions could be pursued based on the simple showcases of this paper. First,

it will be interesting to see whether such property remains with repeated roots in AR(∞)

and VAR models with higher order, although it might be tedious to consider many more

possibilities of root distributions. A more general theoretical results built on the current

work may be ideal. Second, as someone may argue, under-coverage are of higher interest

and concerns to researchers compared to over-coverage problems. Hence, it remains an open

question that whether the distribution of roots will cause under-coverage problems as well.

Finally, it will be interesting to discuss the relationship between this conservativeness and

the feature of iterated forecasting of AR method, and compare it to the non-conservativeness

of direct forecasting of local projection methods.
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Appendix A PROOFS OF RESULTS

A.1 Proof of Proposition 1.

I first prove the following lemma, which derives the the asymptotic distribution of the AR

estimators of the roots λ̂1 and λ̂2:

Lemma 1.

Given Assumption 1, λ̂1 and λ̂2 have the following distribution with convergence rate of T 1/4:

T 1/4

λ̂1 − λ

λ̂2 − λ

 d−→

 √Z
−
√
Z


where Z ≡ (λ, 1)(Z1, Z2)′.

Proof of Lemma 1.

T 1/4(λ̂1 − λ)

=T 1/4

(
ρ̂1

2
+

√
ρ̂2

1

4
+ ρ̂2 −

ρ1

2

)

=
T 1/4

T 1/2
T 1/2 1

2
(ρ̂1 − ρ1) +

√
T 1/2

(
ρ̂1

2

4
+ ρ̂2 −

ρ2
1

4
− ρ2

)
d−→
√

(λ, 1)(Z1, Z2)′

as T → ∞, the first term vanishes. The last equality follows from applying delta method

and using the fact that ρ1

2
= λ. The proof of the limiting distribution of λ̂2 is analogous to

the above process.

Using the result in Lemma 1, we can derive the limiting distribution of the AR estimation

for impulse response function at horizon hT = hT 1/4:
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IRF
∧

(hT )

IRF (hT )
=
λ̂hT +1

1 − λ̂hT +1
2

λ̂1 − λ̂2

1

λhT (hT + 1)

=


(
λ̂1

λ1

)hT +1

−

(
λ̂2

λ2

)hT +1
 λ

(λ̂1 − λ̂2)(hT + 1)

= {exp ((hT + 1)(ln (λ̂1)− ln (λ1)))− exp ((hT + 1)(ln (λ̂2)− ln (λ2)))}

× λ

T 1/4(λ̂1 − λ̂2)(T−1/4(hT + 1))

d−→
{

exp
h

λ

√
Z − exp−h

λ

√
Z

}
λ

2h
√
Z

=
λ

h
√
Z

sinh(
h

λ

√
Z)

where the last equality follows from sinh(x) ≡ (ex − e−x)/2.

To show that the limiting distribution is a real-valued random variable, note that in the

case of Z < 0, the limiting distribution is:

{
exp i

h

λ

√
Z − exp i

(
−h
λ

√
Z

)}
λ

2hi
√
Z

=
2i sin

(
h
λ

√
−Z · λ

)
2hi
√
Z

= sin

(
λ

h

√
−Z
)/

h

λ

√
−Z

which is a real-valued random variable. The case when Z > 0 is trivial.

A.2 Proof of Proposition 2.

(i) First, I prove that

β

(
IRF ∗(hT )

(ρ̂1/2)hThT
,
sinh(f ∗(Z∗ + Z̃))

f ∗(Z∗ + Z̃)

)
p−→ 0
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The proof is analogous to that of Proposition 1, with the following adjustment:

T 1/4(λ̂1 − ρ̂1/2) =
T 1/4

T 1/2
T 1/2(ρ∗1 − ρ̂2) +

√
T 1/2

(
ρ∗21

4
+ ρ∗2

)
=
T 1/4

T 1/2
T 1/2(ρ∗1 − ρ̂2)

+
√
T 1/2[(ρ∗21 /4 + ρ∗2)− (ρ̂2

1/4 + ρ̂2)] + T 1/2(ρ̂2
1/4 + ρ̂2)

d−→
√
Z∗ + Z̃

replacing λ by ρ̂1

2
and
√
Z by

√
Z∗ + Z̃ yields the desired result. Hence, we can approx-

imate the 1− α quantile of bootstrap estimator IRF ∗(hT ) by the quantile of

(ρ̂1/2)hThT
sinh(f ∗(Z∗ + Z̃))

f ∗(Z∗ + Z̃)

(ii) Note that the function

g(x) ≡ sinh(x)/x

is monotonically increasing in x > 0. Therefore, the function g has an inverse denoted

by g−1(·). If Z∗ + Z̃ < 0, then
sinh(f ∗(Z∗ + Z̃))

f ∗(Z∗ + Z̃)
< 1
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For any constant c > 1, we have:

P (g(f ∗(Z∗ + Z̃)) ≤ c)

= P (g(f ∗(Z∗ + Z̃)) ≤ c & Z∗ + Z̃ > 0) + P (g(f ∗(Z∗ + Z̃)) ≤ c & Z∗ + Z̃ ≤ 0)

= P (f ∗(Z∗ + Z̃) ≤ g−1(c) & Z∗ + Z̃ > 0) + P (Z∗ ≤ −Z̃)

= P (h
√
Z∗ + Z̃/(ρ̂1/2) ≥ g−1(c) & Z∗ + Z̃ > 0) + P (Z∗ ≤ −Z̃)

= P

(
0 ≤ Z∗ + Z̃ ≤ g−1(c)2

(
ρ̂1/2

h

)2
)

+ P (Z∗ ≤ −Z̃)

= P

(
Z∗ ≤ g−1(c)2

(
ρ̂1/2

h

)2

− T 1/2(ρ̂2
1/2 + 4ρ̂2)

)

Hence, the 1− α quantile will satisfy

z1−α = g−1(c1−α)2

(
ρ̂1/2

h

)2

− T 1/2(ρ̂2
1/2 + 4ρ̂2)

implying

ĉ1−α = g

(√
z1−α +

√
T (ρ̂1/2 + 4ρ̂2)

h

ρ̂1/2

)
Given the above result, the coverage probability of the one-sided Efron bootstrap CI is

given by

P
(
IRF (hT ) ≤ ĉ1−α(ρ̂1/2)hThT

)
≈ P

(
(ρ1/2)hT ≤ ĉ1−α(ρ̂1/2)hT

)
= P (exp(−hT (ln(ρ̂1)− ln(ρ1))) ≤ ĉ1−α)

d−→ P

(
1 ≤ g

(√
z1−α + Z

h

ρ1/2

)
& Z > −z1−α

)
+ P (1 ≤ Q & Z < −z1−α)

whereas Z is defined as in Lemma 1 and Q is approximated quantile when Z < −z1−α.

Since

g > 1⇔ z1−α + Z > 0⇔ Z > −z1−α
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we have

P (Z > −z1−α) > 1− α

Hence, the Efron one-sided confidence interval under bootstrap lag-augmented AR reveals

an over-coverage problem. The proof for a two-sided confidence interval follows similarly.

A.3 Sketch of Proof for AR(3)

Suppose without loss of generality that λ2 = λ3 = λ in the AR(3) case. We derive the results

in AR(3) case to find the approximation of the 1− α bootstrap quantile of the IRFs.

Analogous to the AR(2) case, assume that

T 1/2


ρ̂1 − ρ1

ρ̂2 − ρ2

ρ̂3 − ρ3

 d−→


Z1

Z2

Z3

 ∼ N3(0,W )

then

T 1/4

λ̂2 − λ2

λ̂3 − λ3

 d−→

 √Z
−
√
Z


where Z ≡ (λ+ λ1, 1)(Z1, Z2)′. Since the limiting distribution of λ̂2 and λ̂3 sum up to zero,

applying the fact that ρ1 = λ1 + λ2 + λ3, we have

T 1/2(λ̂1 − λ1)
d−→ N(0, σ1)

Define

µ(h) ≡ λh+2
1

(λ1 − λ2)(λ1 − λ3)

and denote µ̂(h) its sample analogue. The term µ(h) provides the large h approximation of

the IRFs when λ1 6= λ2 6= λ3.
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Proposition 3. Suppose the assumptions above are satisfied and let hT = hT 1/4, then

IRF
∧

(hT )− µ̂(hT )

IRF (hT )− µ(hT )

d−→ λ

h
√
Z

sinh(
h

λ

√
Z)

Proof of proposition 3.

Numerator:

(IRF
∧

(hT )− µ̂(hT )) = − λ̂hT +2
2

(λ̂1 − λ̂2)(λ̂2 − λ̂3)
+

λ̂hT +2
3

(λ̂1 − λ̂3)(λ̂2 − λ̂3)

Denominator:

(IRF (hT )− µ(hT )) = − λhT +2

(λ1 − λ)2
− λhT +1(hT + 2)

λ1 − λ

= λhT +2(hT + 2)

(
− 1

(hT + 2)(λ1 − λ)2
− 1

λ(λ1 − λ)

)

The ratio is divided into two parts:

(
− 1

(hT + 2)(λ1 − λ)2
− 1

λ(λ1 − λ)

)−1

=

(
−λ− (hT + 2)(λ1 − λ)

λ(λ1 − λ)2(hT + 2)

)−1

p−→− λ(1− λ)2(hT + 2)

λ+ (hT + 2)(1− λ)

and−( λ̂2

λ

)hT +2
1

(λ̂1 − λ̂2)(hT + 2)(λ̂2 − λ̂3)
+

(
λ̂3

λ

)hT +2
1

(λ̂1 − λ̂3)(hT + 2)(λ̂2 − λ̂3)


d−→
(
−exp

(
h

λ

√
Z

)
+ exp

(
−h
λ

√
Z

))
1

(1− λ)(hT + 2)(λ̂2 − λ̂3)
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Combine the two parts, we have:

− λ(1− λ)2(hT + 2)

λ+ (hT + 2)(1− λ)
· 1

(1− λ)(hT + 2)(λ̂2 − λ̂3)

(
−exp

(
h

λ

√
Z

)
+ exp

(
−h
λ

√
Z

))

=− λ(1− λ)

[λ+ (hT + 2)(1− λ)](λ̂2 − λ̂3)

(
−exp

(
h

λ

√
Z

)
+ exp

(
−h
λ

√
Z

))

=− 1− λ
[1 + (hT +2)(1−λ)

λ
](λ̂2 − λ̂3)

(
−exp

(
h

λ

√
Z

)
+ exp

(
−h
λ

√
Z

))

d−→− λ

(hT + 2)(λ̂2 − λ̂3)

(
−exp

(
h

λ

√
Z

)
+ exp

(
−h
λ

√
Z

))
d−→ λ

h
√
Z

exp
(
h
λ

√
Z
)
− exp

(
−h
λ

√
Z
)

2


=

λ

h
√
Z

sinh

(
h

λ

√
Z

)

where the last equality follows from sinh(x) ≡ (ex − e−x)/2 and that sinh(−x) = − sinh(x).

This result is parallel to that of the AR(2) case. Finally, from the above results and analogous

to the proof of Proposition 1, it can be shown that

β

(
IRF ∗(hT )− µ∗(hT )

IRF
∧

(hT )− µ̂(hT )
,
sinh(f ∗(Z∗ + Z̃))

f ∗(Z∗ + Z̃)

)
p−→ 0

where

Z∗ = (ρ̂1/2 + λ̂1, 1)(Z∗1 , Z
∗
2)′

Z̃ = T 1/2

(
(ρ1 − λ̂1)2

4
+ ρ̂1 + ρ̂2 − 1

)
and

f ∗(x) =
h
√
x

(ρ̂1 − λ̂1)/2
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Appendix B MONTE CARLO RESULTS

B.1 Monte Carlo Simulation of AR(3)

Table 3 summarizes the Monte Carlo simulation results for AR(3) model with two repeated

roots. The top panel shows the simulation with distinct root λ1 = 0.8 and repeated roots

λ2 = λ3 = 0.5, and the bottom panel shows the result with distinct root λ1 = 0.5 and

repeated roots λ2 = λ3 = 0.8.

The results are not very different from those in the AR(2) cases. As this simulation does

not use very extreme value of roots, both LP and LPLA behaves well. The bootstrap ARLA

confidence interval has a more significant over-coverage problem with a large distinct root,

as shown in the top panel. When the number of lag increases, it becomes easier for the

confidence interval to explode when using lag-augmented AR method for IRF inferences.

Finally, it may be interesting to explore why the conventional AR method under-covers in

the top panel but over-covers in the bottom panel. This may shed light on the understanding

of the relationship between parameter values and coverage probabilities in other methods.

Coverage Median Length
h AR ARLA LPb LPLAb AR ARLA LPb LPLAb

λ1 = 0.8
1 0.890 0.879 0.909 0.902 0.206 0.213 0.228 0.221
6 0.846 0.873 0.893 0.893 1.470 2.636 1.758 1.662

12 0.806 0.895 0.868 0.863 2.170 16.844 1.283 1.266
36 0.786 0.964 0.902 0.909 4.162 71.287 1.267 1.232
60 0.756 0.962 0.904 0.910 5.990 3.800e+04 1.374 1.341

λ1 = 0.5
1 0.890 0.889 0.907 0.900 0.202 0.214 0.222 0.221
6 0.884 0.894 0.902 0.906 1.607 2.726 1.969 1.752

12 0.886 0.891 0.876 0.882 2.342 19.490 2.671 2.631
36 0.955 0.925 0.899 0.904 0.702 709.750 2.610 2.536
60 0.967 0.913 0.904 0.910 0.052 3.425e+04 2.825 2.740

Table 3: MONTE CARLO RESULTS: AR(3), T = 240
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B.2 Monte Carlo Simulation of VAR(1)

Table 4 shows the simulation results of the VAR(1) model described in Kilian & Kim (2011),

with a repeated root of 0.5 and intercept normalized to zero. This model serves as a bench-

mark case in a variety of existing empirical literature. We observe the same over-coverage

problem in VAR(1) model, even when the eigenvalues are not extreme.

Coverage Median Length
h VAR VARLAb LPb LPLAb VAR VARLAb LPb LPLAb

1 0.895 0.892 0.904 0.903 0.209 0.224 0.230 0.232
6 0.885 0.900 0.904 0.902 0.136 0.045 0.360 0.364

12 0.836 0.920 0.908 0.910 0.018 0.045 0.360 0.364
36 0.876 0.930 0.903 0.902 0.000 0.000 0.382 0.385
60 0.873 0.926 0.899 0.905 0.000 0.000 0.408 0.413

Table 4: MONTE CARLO RESULTS: VAR(1), T = 240
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